Completely Independent Spanning Trees in Line Graphs

نویسندگان

چکیده

Completely independent spanning trees in a graph G are of such that for any two distinct vertices G, the paths between them pairwise edge-disjoint and internally vertex-disjoint. In this paper, we present tight lower bound on maximum number completely L(G), where L(G) denotes line G. Based new characterization with k trees, also show complete $$K_n$$ order $$n \ge 4$$ , there $$\lfloor \frac{n+1}{2} \rfloor $$ $$L(K_n)$$ is optimal, still exist obtained from by deleting vertex (respectively, induced path at most $$\frac{n}{2}$$ ) = or odd 5$$ even 6$$ ). Concerning connectivity moreover following, $$\delta (G)$$ minimum degree

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Completely Independent Spanning Trees in Some Regular Graphs

Let k ≥ 2 be an integer and T1, . . . , Tk be spanning trees of a graph G. If for any pair of vertices (u, v) of V (G), the paths from u to v in each Ti, 1 ≤ i ≤ k, do not contain common edges and common vertices, except the vertices u and v, then T1, . . . , Tk are completely independent spanning trees in G. For 2k-regular graphs which are 2k-connected, such as the Cartesian product of a compl...

متن کامل

Two counterexamples on completely independent spanning trees

For each k ≥ 2, we construct a k-connected graph which does not contain two completely independent spanning trees. This disproves a conjecture of Hasunuma. Furthermore, we also give an example for a 3-connected maximal plane graph not containing two completely independent spanning trees.

متن کامل

Completely independent spanning trees in (partial) k-trees

Two spanning trees T1 and T2 of a graph G are completely independent if, for any two vertices u and v, the paths from u to v in T1 and T2 are internally disjoint. For a graph G, we denote the maximum number of pairwise completely independent spanning trees by cist(G). In this paper, we consider cist(G) when G is a partial k-tree. First we show that ⌈k/2⌉ ≤ cist(G) ≤ k − 1 for any k-tree G. Then...

متن کامل

Completely Independent Spanning Trees in Some Regular Networks

Let k ≥ 2 be an integer and T1, . . . , Tk be spanning trees of a graph G.If for any pair of vertices (u, v) of V (G), the paths from u to v in each Ti,1 ≤ i ≤ k, do not contain common edges and common vertices, except thevertices u and v, then T1, . . . , Tk are completely independent spanningtrees in G. For 2k-regular graphs which are 2k-connected, such as theCartesian pro...

متن کامل

Almost disjoint spanning trees: Relaxing the conditions for completely independent spanning trees

The search of spanning trees with interesting disjunction properties has led to the introduction of edge-disjoint spanning trees, independent spanning trees and more recently completely independent spanning trees. We group together these notions by defining (i, j)-disjoint spanning trees, where i (j, respectively) is the number of vertices (edges, respectively) that are shared by more than one ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Graphs and Combinatorics

سال: 2023

ISSN: ['1435-5914', '0911-0119']

DOI: https://doi.org/10.1007/s00373-023-02688-y